
: ccrrr committees
: ccrrr Study Groups
: country PTrs (country code)
: X.121 organizations

.....1.--

-1

a string of byta the number of which are specified by the length field. It· is
encoded as deOned In the BER for that type.

M ASH. 1 EXTERNAL JYpe fUnlymal Halder)

An AsN.l EX'IERNAL type is a un1versal header. All ASN.l compliant protocol
Interpreters can~ and Interpret an EXTERNAL without ambiguity. The
deftn1tion of EX'IERNAL Is quite flexible. but that flexibility Is not needed here
to meet the basic objectives ofa un1l'ersa1 header.

A simpUfted EX1ERNAL type Is encoded as:

[tag=: cJass"'0.p=1.number==8 ) (length) (object id ) (payload)

~ and~. fldds are encoded as dellCl1bed above. ·Object 10· provides
unambiguous self Jdenttflcation for the header. *Payload· is a sequence ofbytes
that are interpreted according to the standard indicated by the object ID.

·Object m· is itself an ASN.l type with tag. length. and value fields. and Is
encoded as:

[ tag= 0.0.6] [length] lid value]

·Object 10· value is a sequence of bytes that represent the hierarchical
idenUfler for the referenced standard. ID values are assigned. registered. and
admtnlstered by ccrrr and ISO In the COUl1le of standards development Or. ID
assignment can be delegated to member bodies or companies or organizations
(thereby. SMPIE could assume responsibility for administering a portion of the
10 space.) The root preftx: values are:

CCnT(O)
recommendation(O)
question{1)
adminJstration[2]
network operator(3J

ISO{l)
standal'd[O)
reg1stration authority[1]
member body(2)
identified organization[3]

joint ISO CCrnt2]

: ISO standards
: ISO authorities
: member bodies (country code)
: organizations

: assignment delegated to ANSI

.A few prefixes are of particular note. iso.standard regtsters all ISO standards.
ccltt.administration and iso.memberbody are assigned to sovereign bodies
(identified by their international telephone country code). iso.organization is
aaslgned to International orpniZations. These cover virtually all the situations
under which a header ident1fler W1ll need to be assigned.

An 10 value is encoded as a sequence of bytes. The first two levels are encoded
in the first byte -- a.b = 4O·a + b. a <= 3. b <= 39. Remaining levels are encoded

- 23-



.....--

as one ormo~ bytes as needed to repreaent the numerJcal value for that level.
Ifa value is greater than 127. It requ1reS more than one byte: the MSB of the
byte is set to tndtcate that the value 18 continued in the next byte. and so on.
For example. lso.standardJpeg 18 three bytes:

lso.standard.Jpeg :: 1.0.10918 = (40] ( 128+85] (38]

Slmilarly. Group 3 Fax is tdenttfted as:

ccitt.recommendation.t.4 :: 0.0.20.4 = [0 1[20 ) [ 4 )

The extenstb1l1ty of the 10 value field permits up to 126 byte long IDs to specify
distInct IDs numbering to -21\882 or -101\265.

-Payload- 18 an ASH. I type with tag. lenath. and value fields. encoded as a
sequence of bytes that are interpreted according to the standard indicated by
the *Object 10-.

[ tag= 2.0.1 ) [length) [payload value)

[footnote -I: At this wrttlng. JPEG is nearing but not yet an ISO standard.
Thus. though thought to be correct. the number here (l.0.10918) is not yet
oftlcla1.J

ASH. 1 Desq1ptor

In addition to the EXTERNAL type (for use as header). ASN.I defines other basic
types to represent a variety of values. including: booleans. integers. reats. byte
strings. character strings. universal time code. etc.• and constructions of values
into arbitrary data structures.

Although a distinction is drawn between header and descriptor in this report.
the ASN.l approach permits a single mechan1sm to serve both functions. The
full benefits of ASN.I become apparent when it is applied to the descriptor.
Especially the ability to construct new types and to incorporate references to
other standards. (See CWTent ISO work on Image Interchange Format (IIF) for
an example ofASN.l use in de1lning descriptors.)

2.5 How ASH. I Addresses Ob1ectives

The following describes how an ASN.I header/descriptor addresses the
objectives stated at the beginning of this report.

UniVersality -- ASN.I header/descriptor promotes and enhances universality:

• It complies with and recognizes existing standards and practices. All
existing and future ISO/CCnT standards are uniquely Identifled by an

- 24-



ASH.I Object ID.
• It addrell. tile luues of 8G.~. ISO/CCnT admtntsters and

dele8atea ....,."...t of Object IDa to subcommtttees. member bodies (by
countly code). and organtzaUons. 1be complaity of this task and the
beneftts of leveraging existing administrative structures should not be
underestimated.

• It fadlttates coordination among telev1aion. telecommunications. and
computer Industrtes.

• It seta a IQlnlmalleYel of compliance for low cost recetvers. Furthermore.
the advanced stage of deftnttlon. tools. and ex.pertfse wm facllitate the
rapid deployment of header compliant devices.

Longevity -- ASH. I has inherent longevity:

• All fields of ASN.l types (tag. length. value) can be extended. Payload
lengths from a few bytes to -10"303 can be represented. Stmtlarly. Object
IDs can ranee from a few bytes to -10"265 bytes.

• It has a pr....attng regIStry. and 18 self malntasntng. ISO/CCnT already
reglsters. adminllltera. and deJetates a-'lT"J'ent of Object IDs.

• It deftnes Immutable ldentl8ers. Once an Object ID 18 assigned. It exists
"for all time". In the future. when an old ASH.1 header Is recognized. there
Is no ambiguity to the referenced standard.

Extensibtllty -- ASN.l is inherently extensible:

• All fields of ASN.I types can be extended without redeflnition.
• New types can be deflned and their encoding automatically generated

without the need to introduce new rules.
• Since ASH. 1 is fully defined. any complJant recetver and eqUipment are

guaranteed to be able to recognize future extended ASN.l headers.

Interoperabllity -- ASN.l is inherently interoperable:

• It has a well-formed public deftn1tion.
• It is already in use in severa.ltmportant applications and industries.
• It complies with existing and developing standards (including image

standards).
• It allows standards and structures to cross reference each other. The

video data stream can contain structures deftned by other standards. and
vis a versa.

• It permits the same information to be interpreted in different ways within
different domains without prejudice. To the video industry. the
information is a continuous video stream. To the telecommunications
industry. the same information is a sequence of bits to be transmitted. To
the computer industry. that sequence of bits is interpreted as data
structures.

• It permits independent formal deftn1tion of intellectual property protection.
encryption. and other source coding descriptors by appropriately
sanctioned expert groups (either ad hoc or extant).

• Experts groups and standards bodies can autonomously develop and

- 25-



evolve sped1lcaUons within domatns of their expertI8e. The ASN.I cross
referendng capability ac:bleves a ctetvee of InteroperaUon and coordlnation
among paraDel act1Vftles -- coding details are automatically resolved.
avoiding redundant and/or confllcUng efforts.

Cost/Performance Eff'ectlveness --

• It 18 stralgbtforward to recognize and decode with a single uniform
procedure.

• Uniform decode hardware and software can be shared among industries
and app1lcations yielc:Ung economies of scale.

• Existing tools and expertise can reduce the time and cost of deployment.

Compactness --

• ASN.l 18 compact. but not so much as to complicate decoding or to
compromtse other obJectiVes. A qrptcal ASN.I header would be -15 bytes
for a 1 meaabyte payload (i.e.• -.0014% OftI'head).

• A 7-byte ASH.! header can be reallzed using the standard's indirect
reference option. (In fact. a 2-byte context specific header may be
realizable.) Given typical payload sizes. however. it is unlikely that this
level of compactness will be reqUired -- small payloads are either
aggregated or infrequently used. especially in the video domain.

Rapid Capture --

• An ASN.I header 18 signified by its ftrst byte tag fteld (equal to 8) followed
. by length. object td. and payload. Thus. an ASN.l header is
straightforward to recognize in the data stream.

• ASN.l. like any length/identlfter header. provides early identification of the
payload.

EditabUity --

• ASN.l's structuring capabilities permit arbitrary editing. sequencing,
structuring. and embedding of payload streams. All of this is
accompl1shed within a single uniform mechanism. and without requiring
unnecessmy decoding of the payload itself.

- 26-



-1---

1
!

TRANSPORT HEADER

IntrpducUon

The header deIIcr1ptor design provides for' binding of a transport header to the
main header. 1bta .. accompUabecl onJr by mandatfng that the transport
header not be separated from the main header and Its assodated data whlch it
18 transporting. 1be function of the ma1D beader 18 to identify the data which
follows. - The·lunction of the transport~ 1a to help the main header and
possibly its payload in its journey from ortglnation to destination.

The following transport header des&&n 1a "work in progress". and therefore is
meant to be an example rather than the ftnaI structure. It supplements the
dJscussion 10 SecUon 5.4. 1be demgn las.... and Interactions are a bit complex.
80 the prlndples of the transport header design are best illustrated by way of a
correctly designed example. If adjustments are made to this design. then care
must be taken concerning affects of such adjustments to the rest of the design
and the funcUonmc of the transport header. In particular. there is a rigid
requirement that certat.n fields be pre-spedfted as to length. or as to length
specification (type fields) in their meaning.

It is necessary that the transport header be totally independent of any
standards described by the main header. 1b1a is required because it may be
necessary to change transport character1sUca for all main headers on a given
data stream. lrreapect1ve of the standards or formats of those main headers.

An example mlgbt be the need to provide Improved error protection when
moving a data stream from a high reliability fiber to a high error rate radio
frequency t:ransmJsslon.

A.O.l ASN.l Transport Header Yet To Be Designed

The transport header design example illustrated here works together with the
header/descriptor design as descI1bed in sections 1 through 5 of this SMPIE
report.

No transport header has yet been designed for the ASN.I syntax. illustrated in
section 6. Thua. the ASN.I syntax is. at present. only suitable for error-free
channeJs whJch preserve the data and its order Without contention from source
to destination. In order for the ASH.! syntax to meets its objectives of
interoperabfllty with Imperfect or congested channels or medla. a mechanism
stroUsr to the tran8port header example ahown here wtll be required. It is
hoped that a transport header design mtght be developed for the ASN.l syntax
system. possibly modelled on the transport header illustrated here. together
with the main header/descriptor design. '!be enormous flexibility of ASN.I
syntax must be tempered to provide a Umlted number of options for transport
headers. each with appropI1ate protection/correction mechanisms. It is hoped
that registration rules and flexibility in ASN.l can also be used to provide a

- 27-



.-l--

suitable format transport header dest&n wb1ch Is properly restricted. Byte
al1gnment Is also part of the structure fIl length Beida. If bit alignment is
needed for ASN.I. then further suitable adjustments wlll be required.

Another method to prcwlde transport asIIatance Is to convert from the main
header/descriptor design of sections I through 5. to and from the ASN.I
notation. Since a transport header design Is ava1lable (or the maln
header/descriptor. converston to th1s header would provide access to a
transport header. When re-enterlng error and contention free envtronments.
the header/descrtptor could be re-converted to ASN.I syntax.

If the ASN.! nletbod becomes popular. then it Is hoped that a suitable ASN.l
transport mechanism might be developed.

~ Peslm obf«Uyes for the t:ransjJort header

• The transport header must be standard-ld independent. so that it can
apply to all header standards equally and uniformly across the entire data
stream.

•

•

•

: ~.. ~: ': ;;:

The transport header should be removable without damage to the
function of the main header which it is helping to transport.

A transport header must be able to be added to any header format or
descriptor format without changing any of the meaning.

The transport header fonnats should support "in the clear" protection of
the main header and payload. where the bits are not altered. such that
the transport header can be added and removed without any adjustment
of bits within the main header. its descriptor and its payload.

• In addition to support for "in the clear" protection. more efficient
protection should be supported (such as Reed Solomon). where the
header. and possibly its payload are encoded.

• The transport header architecture should support one or more
mechanisms for correcting burst errors.

• Optional support should be provided for encryption of the main header's
descriptor. as well as optionally the data payload.

• The transport header should support authodzation and use information.
in helping the transport system determine which destinations are
appropriate for further or final distribution.

• The transport header architecture should support backward play through
the data stream.

• The transport header should support optional rapid header
synchronization capture.

• The transport header should support communications networks by

- 28-



J--

-, .'

•

•

•

•

pI'O\'lcIJn& JnformatJon concerning the data's priority and value.

The transport header should support umtng J'ClCQI18truct1on when ut1lJzlng
networks which distort t1mtng or ordering or data.

'nle transport"deI' should support data ordering requirements, when
utilizing netwoib whlch mJgbt re-order the data.

The transport header arcb1tecture abouId str1k.e a balance between the
oppoe&Dgr~ of tlex1bt1tt¥ and .. of use. Thus. a small number of
opUom.abolald be carefully cboeen'" ,""mum tleJdb1llty, With the small
number of options allowing a aImple lnterpret8Uon. It Is the fact of having
a amall milDher' of options wbtch aUow8 easy Interpretation.

For transport functions which encode the header and/or Its data. a
simple "in the clear" length field should allow devices which cannot
decode such data to skip to the next transport header.

• For devices which cannot process the transport header. a Simple "in the
clear" length field should allow such devices to skip directly to the header.
Further. such devices should be able to easlly interpret the transport
header format such that they can qu1cldy determine whether the main
header Is "in the clear", and therefore dlrectly readable.

The following example design meets these objectives.

A.2... lbree 'JYpes QfTransport Brader Allocated In the Header KeY

In order to meet these objectives. there are three types of transport headers.
1he tlrst Is the basic transport header. whJch provides the majority of transport
capablllUes. The second Is the Redundancy 'D:ansport Header, which Is used to
protect against burst errors. The third Is the Reverse Transport Header, which
Is used for reverse play.

Three of the two-byte header key's 256 poa,Blble codes are required for the
transport headers. In the current 2-byte header key design, one byte Is
dedicated to error protection. The other byte Is split into two 4 bit fields.

The ftrst 4 bit field Is the '1ength type" field. Codes 15 and 16 (numbers 14 and
15) are unallocated. These two codes enable the second 4 bit ID fleld to be used
for specta1 plKpOH8 such as deslgnatinl the three transport header types. 32
such codes are avadable. leaving 29 codes unallocated If 3 codes are assigned to
the three transport header types.

The basic transport header provides most of the capabilities which are required.

M. Funct1Pns Of1be D'ansoort Header

The functions of the transport header are as follows:

- 29-



....4

1. Sync reinforcement for tho8e data t::nmapart media where It Is destrable to
rapidly or simply Sync to the headers or header-data combinations on
switching between streams.

2. Improved error protect1on via extra protect1on bits for both the transport
header and the main header and Its descriptor.

3. Conveyance of prloJ1ty for the main header and Its data, for those cases
where a cbannel may be operatln& at capacity and thus where channel
controUen must decide which headers and their payloads It must drop.

Authorlmtlon keys may also be needed In order to verify priority. Network
accessing methods. such as pricing-biding techniques, would also be
supported here.

4. Encryption and security infonnation for the main header's descl1ptor,
possibly combined with the descriptor's own encryption and security
information. in order to protect the data stream following the main
header.

The protection optionally prOvided by the main header's descriptor may
need to be augmented when the data stream Is sent through public or
vulnerable exposed channels.

5. Authorization information. Such information would indicate who could
receive. who could edit and re-assemble with other material. etc. Also.
copyright and royalty fee lnfonnation would be enabled here. Perhaps
automated mechanisms of fee for usage would be supported through this
field

6.

7.

8.

9.

Sequence numbeIs may be added where networks are used for transport
which may reorder packets. In addition to sequence numbers. the
combination of the transport header may reqUire information from the
main header's descriptor in order for the network to be able to guarantee
delivety within known latencies and time windows. For out-of-order
deI1very. some networks can control the amount of time between a given
delivery and the deliveIy of neighboring data. In the case of images and
audio. some devices can accept out-of-order information in their buffers
or processing units. but the time is constrained to within one or more
frames, or fractions thereof.

Ttmlng reconstruction. For those applications where exact· Uming
relationships must be reconstructed from a mixed data stream, the
transport header and the main header's descrlptor would communicate to
provide timing reconstruction lnfonnation.

Reserved for future use.

Pad. There is a pad field at the end of the transport header in order to
make the length of the transport header plus the main header. its
descriptor. and optionally its payload come out to a length appropriate for

- 30-

.):.



-1.--

-,

.;: .~ .. :: ., ~

the error correetlon protection formats supported In item 2 (above).

The construction of the transport header tmo1'ta a strict ordering of fields as
above. such that the sync reinforcement 18 always ftrst. the error protection 18
always second. etc. In this way. if each 8e1d Ja present. Its location 18 easily
determined. 11Je error protection fteId wtU alwaya be in a known location. and a
"scope of protectlon" within thts.field deftnm those fields which are protected In
both the transport header as well as In the main header and its descriptor.

~ Redundancy DJmsport Header

The redundancy u-an.port header provides a specJ& function for error
protection against burst errors on the data stream. Improved error protection
against burst errors is achieved via redundant copies of future and previous
headers (these tranaport headers prcwldSng redundancy wt11 not be bound to a
main header. and therefore represent an exception to the binding property of
transport headers).

Such special redundancy transport headers will "stand alone" and be
occasionally interspersed In the data stream. They wl1l contain error-protected
copies (via either the efBcient or lnefJ!lclent method) of some future or previous
header. together with a pointer to that header. and a number indicating how
many headers forward or backward will be traversed before reaching that
header. The previous copies are useful for going backward through a data
stream. and for reconstructing damaged data streams on physical media. such
as disk.

Using a separate header key code. the redundancy transport header has the
following format:

Transport Protection Pointer Protection I
. '.'('~' "~J: . Header To I

Key <- Header <-....... I
Unique Being Duplicated I more ->

Code (Signed Number) I
8 8 32 32 I

Nmnber of
Headers Forward
(or Backward)
(Signed Number)

16

Protection

<-

16

Maximum I Minimum
Millisecond I msec

Tolerance I Tolerance I more ->
From HeaderlFrom Header!

8 I 8 I

- 31-



-----------------------------------------------------------
Protection
for max and
min tolerances

16

Copy of Transport
Header

(if present)

(length varies)

Copy of Main
Header/Descriptor

(length varies)

(end)

: .'~ r: (' " ,. !

The transport header key contains a separate specla1 code indicating that this is
a redundancy transport header containing a copy of a future or previous
header.

ThIs field could pouIbly be followed by a length field. indicating how to skip
past this dupl1cate header.

1be pointer to the header being duplicated Is analogous to a length field. but it
points past several headers to the header being duplicated. It is a Signed
number so that it can reference previous as well as future headers. 32 bits of
protectlon are provtded.

A number ofheaders forward or backward 18 provided. indicating the location of
the header being duplicated In number of headers rather than via a pointer
nength).

The maximum and minimum milliseconds tolerance fields Indicate the
tolerances for separation times between this copy of a previous or future
header. and the header itself. For channels which re-order. Insert. and remove
data. infonnatlon about separation constraints is provided by these fields.

A copy of the transport header is provided. if there is a transport header on the
header being copied.

Then finally there is a copy of the complete main header and its associated
optional descriptor. None of the payload is duplicated.

Me Reyerse Transport Header

In order to support reverse reading of the data stream. a reverse transport
header can be utl11zed. The reverse transport header immediately follows the
main header.

Thus the transport header is situated as follows:

ITransport
I Header
I

I Main I Data
I Header/ I Payload
IDescriptor I

Reverse I
Transport I

Header I

If the main header is preceded by a transport header. then the reverse transport

- 32-



,...1.--

header will point back to both the main header and the transport header. If the
transport header 18 absent. then the reftI"8e transport header will point back
only to the ma1n header, and the length backward to the transport header wtll
be zero.

The reverse transport header format 18 as follows:

-----------------------------------------------------------------
I Reverse I I I I Lenqth I I
ITransport I Protection I Lenqth I Protection I Backward I Protection I

I Header I I Backward I I To I I
I Key I <- I To Main I <- I Transport I <- I

I Unique I I Header I I Header I I
I Code I I I 1 I I

I 8 I 8 I 32 I 32 I 32 I 32 I

1bis design allows these reverse transport headers to be appended after the
main headers to allow backward traversal through the data stream.

It should be noted that when redundant transport headers are in use to protect
against burst errors. that reverse transport headers must follow each such
redundant header. In that case. the length backward to the main header will be
zero. and only the length backward to the transport header will have a non-zero
value.

Note that this header has a fixed length. Thus. when encountering this header
In the forward dlrect1on. no pointer to the next header In the fonn of a length
field 18 required. The fixed length of 18 bytes is pre-determined. and can be
used to skip to the next header. Also. there will never be a payload of data or
any attachment to any headers in the forward direcUon.

M Transport Headers and Device Capture

It 18 important to remember that all devices which can edit the data stream
must preserve the relaUonship of the pre-appended transport header to the
main header. Also. the post-appended reverse transport header must also
remaJn attached to the main header. ifpresent. Thus. when a transport header
is read. the following two headers must also be read before assuming the
header and Its data and transport have been passed.

When capturtng a new data stream. it 18 neceseary to read at least two headers
to determtne If the first main header is valfd. If it bad been preceded by a
transport header which encoded the main header's descrtptor and/or payload.
then the data will not be readable without the transport header. Thus. capture
18 not achleved unUl the second header has been read. which would accompl1sh
the determtnaUon of the first valid header. and its transport header. if present.

Transport Header Fonnat

- 33-



.......--

The transport header format Is as fonows:

Transport Protection Length Protection
Header of Transport

'0".:.;, Key <- Plus Main <-:·"l")ool"-1"~1

.(:~::~ Unique Header Plus more ->
Code Data Payload

8 8 32 32

Length of
Transport

Header

32

Protection

<-

32

Sync
Type

4

I Error I
IProtectionl I
ICorrection .. I
I Type I
I 4 I

Priority
&

Valid Bid
Type

4
more ->

Author
ization
Type

4

Encrypt

Type
4

Sequence
Number
Type

4

Timing Reserved
Future

Type Type
4 4

Protection
For Previous
8 4-bit Types

32

more ->

I Sync
I Field
I (16 possible
I lengths)

I Protectionl
I Correction
I (many possible
I lengths)

I Priority &
I Auth for
I Priority/Bid
I (16 lengths)

Authorization
Copyright and

Use Field
(16 lengths)

I
Imore->
I
I

I Encryption I Sequence Timing I Reserved
I Field I Number Field I for
I I Field I I Future
I (16 lengths) I (16 lengths) 1(16 lengths) I (16 lengths)

(end of transport header -»

Followed by a normal main header:

1 Pad I
I Field I
I (variable I
I length) I

Main I Protect
Headerl <-

Key I
8 I 8

Header
Tail

->
(length fields, descriptor codes, etc)

- 34-



-1.--

A.7.1 Header Code in the Header Key

The transport header beg1ns with a normal header "key". conststing of one byte
ofkey information and one byte of protect:IDn. as for the main header. However.
the transport header uses a header key code reserved speclftcally for the
transport header. The transport header' tall differs from the main header taU.
and has the format outlined above.

A.7.2 Length to Next Header after Main Header

The next fleIdts a 32 bit length field. which points to the next header after the
main header attacbed to this transport header. 1b1s length may be required to
allow skipping put the main header and ita data payload. This wm be required
by those deYices which cannot provide error protection decoding. when the
main header Is protected using the types of error codes which scramble the
main header. This length is protected by 32 additional protection bits to
prOVide reasonably robust bit eJTOr correction. using the type of correction
which does not scramble the 32 bits of length (e.g. Hamming Code).

A.7.3 Transport Header Length

'n1fs field tndlcates the length of the transport header. It therefore forms the
mechanism to sldp to the main header. if there ts no desire to read any of the
transport fields. and If the main header is not scrambled due to error
protectton. enayptton. or other operations from the transport fields.

This field ts also protected by a 32 bit field. using a non-scrambling error
protection code.

A.7.4 Type Fields

There are eight 4-btt type fields. to allow 16 types for each of the eight fields in
the transport header. These fields are (1) sync. (2) error protection and
correction. (3) priOrity and authorization and bidding for priority. (4)
authorization for data use. (5) encryption protection. (6) sequence number and
out-or-order t1m1ng marglns. (7) tlming reconstruction informatton. and (8) a
final field reserved (or future use.

The 32 bits of type fields are protected by 32 bits of protection/correction code.

A.7.5 Sync

The ilrst transport operation field 18 sync reJnforcement. 16 types of codes are
possible. each with a penpanently assigned length. These types and lengths
must be permanently aSSigned from the beginning. A possible set of 16
assignments for lengths might be:

Two types of sync codes could be used. with designed unique spectral

- 35-



I

signatures. Each of the two types of codes could have one of the following
lengths.

2. 4. 8. 16. 32. 64. 128. and 256 bytes

1bis would result In a total of 14 sync re-enCoreement patterns. Sync type 0
would Jndlcate an absence of the sync re-enloreement fteld. Sync type 15 could
represent an additional special sync field. with a speclfled length.

It is necessary for an sync type lengths to be spedfted m advance. Although the
codes for sync themselves can be speclfted later'. they can only be speclfted once
for each of the 15 valid sync types.

It should be noted that the transport header always begtns exactly 26 bytes
prior to the tlrst byte of the sync-reinforcement field. Once the sync
relnforcement field bas been located. the transport header. and the main header
have been located.

A.7.6 Error Protection

None of the fields previously described. which precede the error
correction/protection field. will be protected by this field. However. all of the
fields following and Jncluding this error protection/correction field. starting at
the first bit. will be part of the error protection/correction group. The
protection will extend through the rest of the transport header. and on mto the
main header and Its descrlptor. and for some of the formats Into the payload as
well.

Since sync re-enforcement is used to capture the data stream inittally. it is
probably not appropriate to error protect this sync. The sync codes are
designed to be found within a stream. If protection is needed for the sync field.
then special sync protection can be provided within the ample bytes available
for sync codes.

Two types of error protection are supported. One type allows the protected data
fields to be read. as Is. lea~c1them "clear" but augmenting them with
protection. 1bIs type is veJY ent. .An example of this type of code is the
Hammlng code. The second type scrambles all of the bits Into a robust code.
such as Reed Solomon. for effident protection. In the case of the efficient
protection. the fields being protected wlll be completely unreadable without
decoding. If the header format. the header length field. the descrlptor type. and
many other crudal fields are protected In this 'Way. those devices which carmot
decode the error correction would be unable to either read or skip the header.
Thus. the transport header will contain a "length field". protected In the
ineffident augmentation method rather than the effident scrambling method.
which will a1Iow deYtces to find this length fleld and thereby sklp the rest of the
transport header' and the entire niafn header. its descriptor. and its payload. A
second "length of transport header" field will also be present and protected via
the ineftldent method.

- 36-



-L--.,
I

A 7.6.1 Intentional Jnflexlbl1lty

In order for an of the abcJve mecbanJamII to operate properly and efBetently. it is
neceslllUY to Jimlt the number of formata avaIJalble in the transport header.
Perhaps eight GI' 8tIteeD Vpes oreach of the Ie1da abould be provided for. with
all types being apecJled in advance. We are uaIng sixteen as our example.
Thus. there would be atxteen error~ code fonData and L code lengths.
sJxteen sync reinforcement BeJd formats ancr1qtba. mteen priority fields and
lengths. etc. with each field format having a apecl8ed length.

SInce the error CM'eCUoD transport fuDdkm Is tbe most dIfBcult wtth respect to
format. a very Umtted m1mber of IleId~ WIll be provided under the scope
of protection. Alao. padding. which might be quite long. wm be required at the
end of the traMport header before the maiD beader In order to make the total
length of the transport header plus the main header and Its de8Criptor (and
poSSibly payload) to be a slmple-to-correct convenient known length
corresponding to one of the sixteen protection types.

A7.6.2 Possible Pre-Spec1fted Protection'l)tpes

The pre-spec1fted sixteen possible protection types might be:

lYPe 0 Indicates that no protection/correcUon field is present.

Types 1 through 10 protect "In the clear". by tnefiletently adding protection bits
without scrambUng. as In Hamming codes.

1)rPes 1 through 5 protect the transport header. the main header. and Its
descriptor.

The types are as follows:

1. Protect all rema1nJng transport header bits. begtnnJ.ng at the first bit of
the error protection/correction field. all main header bits. and all
descriptor bits. Do not protect any payload bits. The
protectlon/correctlon bits are applied. on every group of 64 bits. The total
length of all fields being protected. excluding the error code bits
themselves. must be a multiple of 64 bits. This is accompUshed by the
use of pad bits at the end of the transport header.

This implementation requires that memory be avaJJable to store the correction
bits for the enure length of transport header. main header. and Its descriptor.

For type 1. the total length of the protection code field is the total length over
16. Four bits for every 64 (68 bits total on 64 bits of data).

2. Same as 1. but total length over 8. Eight bits protecting every 64 (72 bits
total for 64 bits of data).

3. Same as 1. but total length over 4. Sixteen bits protecting every 64 (80
bits total for 64 bits of data).

- 37-



7.

6.

..:

4. Same as 1. but total length over 3 (hal{ as long as the fields being
protected). 32 bits protecting every 64 (96 bits total for 64 data).

5. Same as 1. but total length over 2 (the aame length as the tlelds being
protected). 64 bits protecttng every 64 (128 total for 64 data).

Types 6 through 10 protect the payload in addition to the transport
header. the main header. and its deecrtptor.

same 88 type 1. except protect the payload 88 well. For type 6. the total
length Ql the protection code fteJd fa the total length over 16. Four bits
protectlng every 64 (68 bits total 64 bits ofdata).

same as 6. but total length over 8. EIght bits protecting every 64 (72 bits
total for 64 bits of data).

8. same as 6. but total length over 4. Sixteen bits protecting every 64 (80
bits total for 64 bits of data).

9. same as 6, but total length over 3 (half as long as the fields being
protected). 32 bits protecting every 64 (96 bits total for 64 data).

10. same as 6. but total length over two (the same length as the fields being
protected). 64 bits protecting every 64 (128 total for 64 data).

1YPes 11 through 15 protect by scrambling, as in Reed-Solomon coding, which
is efIlcient.

1)tpes 11 and 12 protect the transport header. the main header, and its
descriptor.

11. Protect all remaining transport header bits. beglnnlng at the first bit of the
protectionlcorrection field, all main header bits, and all descriptor bits.
Do not protect any payload bits. 'Ihe protection Is appUed using 16 bytes
on every group of 144 bytes. The total length of all fields being protected,
including the error code bits themselves, must be a multiple of 144 bytes.
1bIs is accompUshed by the use of pad bits at the end of the transport
header.

nus implementation requires that memoty be available to store the correction
bytes for the entire length of transport header, main header, and its descriptor.

For type 11. the total length of the protection code Is 16 bytes for every 144.
Thus. there are 16 extra protection bytes in each 144 bytes being stored.
resulting in 128 bytes of data after decoding.

12. same as 11. but with 16 bytes protecting every 80 bytes, resulting in 64
bytes of data after decoding. The total of all lengths. beginning at the first
bit of the protectionlcorrection field. must be a multiple of80 bytes.

Types 13 and 14 protect the payload in addition to the transport header, the
main header. and its descriptor.

- 38-

'-



:_ f· •• ,. '. '~ :.

13. Same as 11. except the payload Is also protected.

14. Same as 12. except the payload" also protected.

15. Same as 11. except 4 bytes protect 32 bytee (total of36 bytes for 32 bytes
ofdatal. 1hJs format Is for short header formats. and provides no payload
protect1on.

A.7.6.3 Interleavtng

In addition to the above mechanisms for error protection. some of the error
protection formats can invoke lnterleavtDg. interleaVing can substantially
reduce the problema assodated with burst errors. Although the lnitJal part of
the transport header 18 subjeCt to being "wiped out" by a burst error.
presumably a copy of this aectlon could be avaIable previously In a redundancy
transport header. 1hu8. once the protection fonnat has been determJned. then
the rest of the traDlIport header. begInninC at the error protection field. plus the
main header. Its deacr1ptor. If present. and optionally the data payload. can all
be protected from burst errors Via interleaving In addition to error correction
methods.

Pre-defined interleaving methods can be incorporated with some of the types
dIscussed~. Because Interleaving .. likely to inVolve as wide as~ as
is feasi". t.I1otR will be a tn&deoft" betMJen the length of the protected field. and
natural mult1plea of the error protection stzea. The error protection group sizes
for Ham:ml.rlg-type cod. are much smaller than the error protection group sizes
for Reed-Bolomon-t;ype codes. Interleavtne muat be some multiple larger again.
111us. useful interleaving may be restrtcted to longer lengths of fields being
protected. One pouIbillty is to have the interleaving spacing be the error
protection group size divided into the total length.

However. this near-opttmal format requires some complexity in unwinding the
interleaving. For long protected fields. this may also involve a buffer which is
the length of the field. Thus. there are potentlal Issues to Investigate with
respect to how to UniVersally and generally specify a powerful interleaving
technique.

A.7.6.4 Errol" Detection

There is no provision for simple error detection in the above example types.
Such detection could be provided via cyclJcal redundancy code (eRe). fire code.
checksum. partty or other check method. Such may be useful in some cases.
However. the focus on error correction is based on the need for headers to be
interpreted without error in order to seIVe their function.

The descriptor in the maJn header can be used for detection codes for data
payloads which should be checked. but which need not be corrected. This need
not be standard-spectftc. since the descI1ptor can be standard independent.

- 39-



. :.~~.. :",' .

".'

,

Thus. error detection. as opposed to correction. 18 more appropriate in the
descriptor than in the transport header.

A.7.6.5 Parameters OfError Protection

The parameters of error detection shown in the abov'e type examples need
further inveStigation and reftnement. 1be lengths and protection ratios
proposed are known to be 1mplementable in existing hardware. and are
expected to be convenient in practices. However. further investigation of
opumaI parameters for error protection may help refine or revise the parameters
suggesteda~.

A.7.7 Priority and Authorization or Bid (or Priority

Finite bandwklth resources. such as satdtte channels. long fiber channels.
long real-time computer channels. terrestrlal broadcast channels. and other
channels wlth lone dSat8nces cause long latency which naturally prevents error
retry. ThUS. cbannel bandwidth allocaUon near saturaUon on real-time Imagery
streams takes the form of packet coWsfons. Such packets are most naturally
the header/descrlptor/payload combination. since each can have its own
priOrity. and since each forms a constant priority grouping. The constant
priority grouping would be the construction used by the Origtnator.

When shar1ng a flDIte-bandwidth channel. It may be necessary to pass some
data and drop other data. In order for the chMmel's contro1l1ng device to fairly
determine which packets to pass and whtcb to drop. priorities (or packets might
be provided. In many spatial-frequency based compressed Imagery formats
such as OCT. Sub-band. and wavelets. the high frequencies represent tiny
picture detail wh1ch mtgbt be lost wlthout much picture degradation. However.
the spat1allow frequencies. the audio. and the motion vectors must be heavily
protected, and may not be dropped without visible arUfacts.

The type field would specify the length and format of the priority and/or
authorlzaUon ftelds that follow. The length might have 2....type length (two to the
power o( the value in the type field. being 2. 4. 8. 16. 32. 64. 128. etc bytes).
1YPe 0 sUll represents the absence of the priority field.

Since the priority and their authorization fields wl1l compete at the highest level.
it wl1l be necessaIY for us to define their meaning at the outset. We wl1l further
need to define the mappings between the shorter and longer versions of each
fteld.

The format of the fields might be as follows:

Type O. 1 byte:

I Priority I
I 8 bits I

- 40-



...1--

Type 1, 2 bytes:

I Priority I
I 16 bits I

Type 2, 4 bytes:

I Priority I Authorization I
I 16 bits I 16 bits I

Type 3, 8 bytes:

I Priority I Bid/Value I Authorization I
I 16 bits I 16 bits I 32 bits I

Type 4, 16 bytes:

I Priority I Bid/Value I Authorization I
I 4 libytesl 4 bytes I 8 bytes I

Type 5, 32 bytes:

I Priority I Bid/Value I
I 4 bytes I 4 bytes I

Type 6, 64 bytes:

I Priority I Bid/Value I
I 8 bytes I 8 bytes I

Type 7, 128 bytes:

I Priority I Bid/Value I
I 8 bytes I 8 bytes I

Authorization I
24 bytes I

Authorization I
48 bytes }i I

Authorization I
112 bytes I

etc.

The priority field varies from 1 to 8 bytes. allowing very detailed priority levels.

- 41-



·1,:

The BidNalue tleld allows a packet to have a "bidding price" in a coWsion With
other packets. Such a bidding price would be a value If the price had
previously been accepted. A value would Imply that toestng the packet would
break a contract for delivery of the packet. The meanings of the BtdNalue
fields would be tied directly to authoriZation codes. which would indicate the
following:

1. Whether the header was authorized to bid.

2. The "credit rating" (or importance) of the bidder. nus could potentlally
weight the priority field.

3. Whether the bid had been previously accepted. such that the BidNalue
field was the value paid for the payload's delivery. In such a case. tossing
the packet would violate the contract. Presumably such a case would
only occur when more contracts had been made than were avaflable. such
that packets were only tossed by other sbntlar accepted-bid packets with
an established value. nus is a stmUar problem to "overbooking" on
airlines.

4. AuthOrization may affect the bid/value. If commissions are paid on some
bids or values. and not on others. the net bid or value may differ. nus is
similar to the problem of bids in dUTerent currencies. or direct bookings vs
using agents. Thus authorization can indicate the source and/or type of
a bid for these purposes.

The priority should be registered in entirety. Thus. the meaning of priority
codes might be deflned by regiStration. However. it may be desirable to have
priorities have Simple linear precedence order. with higher values representing
higher priorities. One possible solution. is to define the first, or the first and
second bytes of the priority to be linear magnitude precedence priority codes.
Subsequent bytes. however. could be l"eIlStered codes. with unique meanings
which are standardized to help resolve priority conflicts.

Other than the potentia1interactions of authorization on priority and bid/value.
authorization can have the following very important uses:

A 7.8 The Authorization Field

Uses ofauthorization

1. Pay-per view target encryption codes (in lock step with receiving system).

2. Channel authorization. For example. is a Satellite downlink channel
signal authorized for use as a cable head-end?

3. Channel routing authorizations. For instance. are all authorized
destinations only on network fork A. such that a source for sub-networks
A and B need not carty the payload to sub-network B. This is the
function of supporting a subset of all of the outputs involved in a "Y"
cOIUlection.

- 42-



A.--

1
4. End user authorization for telec~. to Indicate who can be

included in the teleconference. Including who may observe and who may
Orlglnate.

5. Privacy and protection against unautbol1Zed acceptance or origination of
the sJgpal In any use., For example. protection against real-time
datastream "backers". or againSt unauthoriZed video-phone "wire
tapptng".

6. Authorized uaer enablement codes. Such codes would authorize user
aystelll8 for future authoriZed coda. For example. when a cable
subscrtber adds a new channel. an enablem.ent code would be sent to
their decoder to add authorization interpretation and viewing for the new
channel.

7. Diagnostic. statistic. and rating codes for exploring network loads. active
users. show ratings. unintentional network disconnects. channel error
rates. etc.

8. Copyright Infonnation indicating ownership.

9. Copyright fee structures. including where to pay fees.

10. Indications of who may edit a work. and whether it may be included in
other works. and fee structures for doing so.

11. Possibly an automated mechantsm could be constructed to automatically
negotiate rlgbta based on pre-arranaled "wIlltng to pay" algorithms. so that
cltps can be Included without undue complication.

A 7.9 Encryption

One function of the transport header is to provide one or more encryption keys
for deciphering the payload and descrtptor.

Many protected users may wish to protect against unauthorized dec1phertng of
the descriptor. since it may contain valuable infonnation which could help in
dedphering the payload. Codes could be used for encryption keys. for example.
to unlock desCriptors. Descriptors. in turn. may contain more elaborate
encryption codes to further unlock the payload.

Based upon succesaCu1 authorization code interactions. encryption codes can be
dedphered and applied against the descriptor. the payload. or both.

As usual. a type 0 represents that no encryption field is present. 15 types are
available. with 15 pre-spec1fled associated lengths. for encryption.

Although the lengths must be prespeclfied. the meaning of the encryption. or its
associated technique. can be completely private.

- 43-



.. ''''.. --,~. :

Complex encryption algorithms can be developed and updated between
1mbedcled codeII in the receivlng device. codes in the descrtptor. and poS8lbly
algorithms transmitted and updated via descriptors.

A 7.10 Sequence Numbers

The sequence numbering lleld spec1tlea not only packet ordel1ng. but also
windows of order and groupings. For eumple. In some systems vartous
headers and their associated payloads form packets which can update the
screen in any order during the frame Ume before the butTer switch for viewing.
However. motion 'YeCtor8 mlg'ht need to precede compressed Image deltas. Thus
not only packet grouping. but packet general orderlng might be spedfted.

On some networks. lower prtortty packets are delayed. rather than dropped. In
such networks. it is necessary for the network controll1ng mechanisms to
understand the bounds on acceptable delay for packets and groups of packets.

ntis field contains a series of codes for defln1ng tolerance of imagery and other
real-time streams for being received out-of-order.

Type 0 means no sequence field is present. 15 valid type fields with the
associated pre-spec1fted lengths are avaUable.

A.7.11 TIming Reconstruction

In real-time data streams. it is often necessary to reconstruct precise tlmlng
after this timing is disrupted dUrin, transport. TIming reconstruction
information. concerning the times at which events should occur. are specified In
this field. TImes can be specf1led as absolute times. where the transport delays
and their bounds are known. Relative times can be speclfted relative to an
arbitrary "start of real-time stream" clock marker which is set by the receiving
device upon receiving the first displayable buffer load.

SynchronJzation between audio and image. between multiple audio streams. or
between streams from multiple sources. is handled via the timing
reconstruction field.

Re-syncbron1zation for removing cumulativeJitter effects can also be enabled
through the use of this field.

A type of 0 Indicates an absence of the t1mIng reconstruction .field. The fifteen
available codes will have prespec1fled lengths. although their timing meanings
may be deferred from some of the types. Of course. each of the types can only
receive a stng1e meaning. which meaning must stay In place from then on. The
lengths for such unspecifted codes must all be spec1fied In advance. however.

A 7.12 Reserved For the Future

This field is unspec1fted in content and length. Because the total length of the '-..-/.
transport header is known. and because this is the last field in the header prior

- 44-



.....--

,--"..

to the pad. this fteldL can maintain flexibility for future use by rema1n1ng
completely unspedfted.

All other fields must at least have their lengths specUled for each type value.

A.7.13 Pad Bits

Pad Bits make the lengths Simple for error correction processing. This is
accomplished by making the total of the error COITeCtIon/protecUon field range
be the appropriate length for the error correction format being used. For
example. ualDl a 64-blt length type. the length after the error
protection/correction Beld must be a mulUple of64 bits. Thus if the scope of
the proteeUOn Includes additlonal traDaport Belda. such as priOrity and
encryption. plus a header and Its descriptor. the pad bits would make the sum
a proPer multiple of64 bits.

- 45-



.." .

...........~~:

APPEImIXB

ILLUSTRATlVIt aAIIPLES OF
HEADER DECODING USING ftCft

fL.Q BackimuV'

It is often matrueuve to represent a desfet u a computer program written in
some approprtate language (in this case CT. It~es the design and provides a
basis for comparing the cost and performance of design alternatives. The C
language was chosen because it is reasonably untversal.

Conciseness and consistency are foremost considerations in enabling compre
hension and fair comparison: optimal perfonnance is of secondary importance.
Optimizations and enhancements would be added in preparation for commer
Cial distribution.

Two programs are described.: One decodes a compact header and one
decodesanASN.l header. They are similar in appearance and use the same
basic steps. The primary difference is the compact header decoder selects
between multiple fonnats using table lookups, while an ASN.l header has only
one extensible fonnat.

Each program extracts the block length and standard identifier from the
header, and then calls a corresponding function to process the payload.

lU Compact Header Decoder

The following program decodes a packet with a compact header. If the packet
format is predefined. it calls the corresponding predefined function. otherwise it
extracts the standard identlfter and block length in a manner similar to the
algorithm described in Section 5.2.8. It uses the identifier to lookup a decoding
function (1), and ignores any blocks with unknown identifiers.

Two table lookups are used to decode the compact header. The length-type
table (It table) contains information used to decode predefined messages and
block length. The identifier table (id table) contains infonnation used to decode
the standard identlfter.

One obvious optimization is to combine the two table lookups into a single 256
entry lookup. This reduces the instruction path for some cases, but increases
memory requirements.

The identifier is left as a string of bytes used to compute a hash table lookup of
a decoding function. If a sovereign state field exists, it is processed together
with the standard identifier, but a separate hash table is used. The hash table
lookup is perfonned by the procedure lookupO which takes identifier address,

- 46-



~-,
ident1fter length. and table selection as arguments. and returns a pointer to the
corresponding function (f).

B.1.1 Cautionary Notes

certain header formats are not yet deftned or are reserved for future use. The
program below does not support these formats.

Predeflned meI I age types are not yet atandardized. To make the code complete
a dummy function call fakeO has been used. When the functions are
standardJzed~the It table would change accord1ngly.

Block length Is asaWDed to fit within one 32 bit word. ExtendJng the program
andlor the C language to support larger word sizes. thus larger block lengths.
is possible and l1kely to happen as 64 bit processor architectures emerge.

Bit field ordering and assignment are not yet defined. Choices made in the
program below will require further consideration in the context of
standardization.

If an unknown identlfter is encountered. the lookup function will return a
pointer to an appropriate default function that ignores the payload and displays
an infonnative message.

B.l.2 Program Text

The program has two parts---the first part contains table and procedure
declarations. the second part (at the end) contains the dozen or so statements
actually executed. Throughout the code descI1ptive notes (comments that are
not executed) are placed be~n comment de1Jmf.ters "·...·/).

/* Compact header has one of two forms:
•
• Each character in the strings below represents a byte; bytes between
• square brackets are optional; payload bytes are not counted
•
• 2 byte (mlnimum) for predefined messages:
•
• ''ke(p...p)"
•
• Extended header for longer blocks:
•
• "kel(oo.lJ(e...eJi(oo.iJ"
•
• Key:
•
• k:: key byte Uength type and id type. presence of a readable description)
• e:: error byte
• 1:: length byte
• i:: id byte

- 47-


